自動駕駛是什么結構(自動駕駛是什么結構的)
本篇文章給大家談談自動駕駛是什么結構,以及自動駕駛是什么結構的對應的知識點,希望對各位有所幫助,不要忘了收藏本站喔。
本文目錄一覽:
自動駕駛汽車至少包括哪些系統
【太平洋汽車網】自動駕駛汽車的系統分為4大類:分別是駕駛輔助系統,部分自動化系統,高度自動化系統以及完全自動化系統。所謂自動駕駛汽車指的是可以利用人工智能、視覺計算、雷達、監控裝置和全球定位系統協同合作,讓電腦在沒有任何人類主動操作下,自動安全地操作機動汽車。
自動駕駛汽車依靠人工智能、視覺計算、雷達、監控裝置和全球定位系統協同合作,讓電腦可以在沒有任何人類主動的操作下,自動安全地操作機動車輛?!?】中文名汽車自動駕駛系統外文名MotorVehicleAutoDrivingSystem特點人工智能、視覺計算用途實現無人駕駛的智能汽車系統目錄1研發歷史2研發思路_安全性_能源消耗3技術原理4結構性能_激光雷達_前置攝像頭_左后輪傳感器_前后雷達_主控電腦5試驗行駛6發展前景7產品評價汽車自動駕駛系統研發歷史播報2009年,曝光了自動駕駛汽車的雛形圖片。
2010年10月9日,谷歌公司在官方博客中宣布,正在開發自動駕駛汽車,目標是通過改變汽車的基本使用方式,協助預防交通事故,將人們從大量的駕車時間中解放出來,并減少碳排放。
2011年10月,谷歌在內華達州和加州的莫哈韋沙漠作為試驗場對汽車進行測試。同年,美國內華達立法機關允許自動駕駛車輛上路,這也是美國首個類似法律。該法律2012年3月1日正式生效。
2012年4月,谷歌宣布自動駕駛汽車已經開了20萬公里(離強制報廢不遠了)并已經申請和獲得了多項相關專利。
2009年曝光車型2012年5月7日,內華達州機動車輛管理局(DMV)批準了美國首個自動駕駛車輛許可證。在頒*** 照前,有關官員此前曾在高速公路、卡森城街區和拉斯維加斯大道檢驗過這款汽車,并宣稱,先前在高速公路、市內街道和拉斯韋加斯鬧市區域的測試顯示,自動駕駛汽車可以安全行駛,甚至比人工駕駛更加安全。
(圖/文/攝:太平洋汽車網問答叫獸)
什么是自動駕駛
【太平洋汽車網】自動駕駛汽車,又稱無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,為一種運輸動力的無人地面載具。作為自動化載具,自動駕駛汽車不需要人類操作即能感測其環境及導航。
自動駕駛汽車,又稱無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,為一種運輸動力的無人地面載具。作為自動化載具,自動駕駛汽車不需要人類操作即能感測其環境及導航。
0:即無自動。駕駛隨時掌握著車輛的所有機械、物理功能,僅配備警報裝置等等無關主動駕駛的功能也算在內。
無自動駕駛,就是駕駛員完全手工駕駛,一點不能分心。
等級
1:駕駛者操作車輛,但個別的裝置有時能發揮作用,如電子穩定程式(ESP)或防鎖死剎車系統(ABS)可以幫助行車安全。
只是可以起到一個輔助的作用,駕車主力還是駕駛員。
等級
2:駕駛者主要控制車輛,但系統階調地自動化,使之明顯減輕操作負擔,例如主動式巡航定速(ACC)結合自動跟車和車道偏離警示,而自動緊急煞停系統(AEB)透過盲點偵測和汽車防撞系統的部分技術結合。
等級
3:駕駛者需隨時準備控制車輛,自動駕駛輔助控制期間,如在跟車時雖然可以暫時免于操作,但當汽車偵測到需要駕駛者的情形時,會立即回歸讓駕駛者接管其后續控制,駕駛必須接手因應系統無力處理的狀況。
等級
4:駕駛者可在條件允許下讓車輛完整自駕,啟動自動駕駛后,一般不必介入控制,此車可以按照設定之道路通則(如高速公路中,平順的車流與標準化的路標、明顯的提示線),執行包含轉彎、換車道與加速等工作,除了嚴苛氣候或道路模糊不清、意外,或是自動駕駛的路段已經結束等等,系統并提供駕駛者“足夠寬裕之轉換時間”,駕駛應監看車輛運作,但可包括有旁觀下的無人停車功能。
5:駕駛者不必在車內,任何時刻都不會控制到車輛。此類車輛能自行啟動駕駛裝置,全程也不須開在設計好的路況,就可以執行所有與安全有關之重要功能,包括沒有人在車上時的情形,完全不需受駕駛意志所控,可以自行決策。
(圖/文/攝:太平洋汽車網問答叫獸)
自動駕駛汽車需要的是什么技術
【太平洋汽車網】自動駕駛本身就是一項技術,而且自動駕駛分為好幾個等級,每個等級的原理和所使用的技術又是不同的。自動駕駛需要通過以下四步才可以完成:信息收集、分析識別、行動決策、設備控制。
Waymo的技術核心是圍繞激光雷達的一整套系統套件。
從技術層面來看,自動駕駛方面的關鍵技術不僅包含汽車本身的硬件/軟件平臺、系統安全平臺、整車通信平臺、核心算法等基礎技術,也包括云控平臺的系統架構和核心算法,最重要的核心器件是中央處理器、云端域控制器等。
這里不僅包括面向自動駕駛配套的集成化的主干網加多域控制的新型電子電器架構作為基礎。針對智能駕駛控制部分,L2級及以下采用基于MCU的多ECU分布式控制方式,而L3以上則必須采用基于高性能SOC(SystemonChip)構建的域控制器的集中控制策略。
以環境感知數據、GPS信息、車輛實時數據和V2X交互數據等作為輸入,基于環境感知定位、路徑決策規劃和車輛運動控制等核心控制算法,輸出驅動、傳動、轉向和制動等執行控制指令,實現車輛的自動控制,并通過人機交互界面(如儀表)實現自動駕駛信息的人機交互。
為了實現智能駕駛系統高性能和高安全性的控制需求,匯集了多項關鍵技術:包括基礎硬件/軟件平臺技術、系統安全平臺技術、整車通信平臺技術、云計算平臺技術、核心控制算法技術等。
(圖/文/攝:太平洋汽車網問答叫獸)
自動駕駛及關鍵技術難點
自動駕駛是汽車行業新一輪的技術革命,推動著傳統汽車行業快速轉型升級,是未來汽車的發展趨勢。自動駕駛技術有利于改善汽車交通安全、提高交通運輸效率、實現節能減排、促進產業轉型等?!吨袊圃?025》規劃中已將智能網聯汽車列入未來十年國家智能制造發展的重點領域,明確指出到2020年要掌握智能輔助駕駛總體技術及各項關鍵技術,到2025年要掌握自動駕駛總體技術及各項關鍵技術。本文將介紹自動駕駛等級分類標準、自動駕駛軟硬件架構圖以及自動駕駛涉及到的關鍵技術等。
美國汽車工程師協會根據汽車智能化程度將自動駕駛分為L0-L5共6個等級:其中L0為無自動化(No Automation, NA),即傳統汽車,駕駛員執行所有的操作任務,例如轉向、制動、加速、減速或泊車等;L1為駕駛輔助(Driving Assistant, DA),即能為駕駛員提供駕駛預警或輔助等,例如對方向盤或加速減速中的一項操作提供支持,其余由駕駛員操作;L2為部分自動化(Partial Automation,PA),車輛對方向盤和加減速中的多項操作提供駕駛,駕駛員負責其他駕駛操作;L3為條件自動化(Conditional Automation,CA),即由自動駕駛系統完成大部分駕駛操作,駕駛員需要集中注意力以備不時之需;L4為高度自動化(High Automation,HA),由車輛完成所有駕駛操作,駕駛員不需要集中注意力,但限定道路和環境條件;L5為完全自動化(Full Automation, FA),在任何道路和環境條件下,由自動駕駛系統完成所有的駕駛操作,駕駛員不需要集中注意力。
自動駕駛汽車的軟硬件架構如圖2所示,主要分為環境認知層、決策規劃層、控制層和執行層。環境認(感)知層主要通過激光雷達、毫米波雷達、超聲波雷達、車載攝像頭、夜視系統、GPS、陀螺儀等傳感器獲取車輛所處環境信息和車輛狀態信息,具體來說包括:車道線檢測、紅綠燈識別、交通標識牌識別、行人檢測、車輛檢測、障礙物識別和車輛定位等;決策規劃層則分為任務規劃、行為規劃和軌跡規劃,根據設定的路線規劃、所處的環境和車輛自身狀態等規劃下一步具體行駛任務(車道保持、換道、跟車、超車、避撞等)、行為(加速、減速、轉彎、剎車等)和路徑(行駛軌跡);控制層及執行層則基于車輛動力學系統模型對車輛驅動、制動、轉向等進行控制,使車輛跟隨所制定的行駛軌跡。
自動駕駛技術涉及較多的關鍵技術,本文主要介紹環境感知技術、高精度定位技術、決策與規劃技術和控制與執行技術。
環境感知指對于環境的場景理解能力,例如障礙物的類型、道路標志及標線、行車車輛的檢測、交通信息等數據的語言分類。定位是對感知結果的后處理,通過定位功能從而幫助車輛了解其相對于所處環境的位置。環境感知需要通過傳感器獲取大量的周圍環境信息,確保對車輛周圍環境的正確理解,并基于此做出相應的規劃和決策。
自動駕駛車輛常用的環境感知傳感器包括:攝像頭、激光雷達、毫米波雷達、紅外線和超聲波雷達等。攝像頭是自動駕駛車輛最常用、最簡單且最接近人眼成像原理的環境感知傳感器。通過實時拍攝車輛周圍的環境,采用CV技術對所拍攝圖像進行分析,實現車輛周圍的車輛和行人檢測以及交通標志識別等功能。攝像頭的主要優點在于其分辨率高、成本低。但在夜晚、雨雪霧霾等惡劣天氣下,攝像頭的性能會迅速下降。此外攝像頭所能觀察的距離有限,不擅長于遠距離觀察。毫米波雷達也是自動駕駛車輛常用的一種傳感器,毫米波雷達是指工作在毫米波段(波長1-10 mm ,頻域30-300GHz)的雷達,其基于ToF技術(Time of Flight)對目標物體進行檢測。毫米波雷達向外界連續發送毫米波信號,并接收目標返回的信號,根據信號發出與接收之間的時間差確定目標與車輛之間的距離。因此,毫米波雷達主要用于避免汽車與周圍物體發生碰撞,如盲點檢測、避障輔助、泊車輔助、自適應巡航等。毫米波雷達的抗干擾能力強,對降雨、沙塵、煙霧等離子的穿透能力要比激光和紅外強很多,可全天候工作。但其也具有信號衰減大、容易受到建筑物、人體等的阻擋,傳輸距離較短,分辨率不高,難以成像等不足。激光雷達也是通過ToF技術來確定目標位置與距離的。激光雷達是通過發射激光束來實現對目標的探測,其探測精度和靈敏度更高,探測范圍更廣,但激光雷達更容易受到空氣中雨雪霧霾等的干擾,其高成本也是制約其應用的主要原因。車載激光雷達按發射激光束的數量可分為單線、4線、8線、16線和64線激光雷達??梢酝ㄟ^下面這個表格(表1),對比主流傳感器的優勢與不足。
自動駕駛環境感知通常采用“弱感知+超強智能”和“強感知+強智能”兩大技術路線。其中“弱感知+超強智能”技術是指主要依賴攝像頭與深度學習技術實現環境感知,而不依賴于激光雷達。這種技術認為人類靠一雙眼睛就可以開車,那么車也可以靠攝像頭來看清周圍環境。如果超強智能暫時難以達到,為實現無人駕駛,那就需要增強感知能力,這就是所謂的“強感知+強智能”技術路線。相比“弱感知+超強智能”技術路線,“強感知+強智能”技術路線的最大特征就是增加了激光雷達這個傳感器,從而大幅提高感知能力。特斯拉采用“弱智能+超強智能”技術路線,而谷歌Waymo、百度Apollo、Uber、福特汽車等人工智能企業、出行公司、傳統車企都采用“強感知+強智能”技術路線。
定位的目的是獲取自動駕駛車輛相對于外界環境的精確位置,是自動駕駛車輛必備的基礎。在復雜的地市道路行駛,定位精度要求誤差不超過10 cm。例如:只有準確知道車輛與路口的距離,才能進行更精確的預判和準備;只有準確對車輛進行定位,才能判斷車輛所處的車道。如果定位誤差較高,嚴重時會造成交通完全事故。GPS是目前最廣泛采用的定位方法,GPS精度越高,GPS傳感器的價格也越昂貴。但目前商用GPS技術定位精度遠遠不夠,其精度只有米級且容易受到隧道遮擋、信號延遲等因素的干擾。為了解決這個問題,Qualcomm開發了基于視覺增強的高精度定位(VEPP)技術,該技術通過融合GNSS全球導航衛星、攝像頭、IMU慣性導航和輪速傳感器等多個汽車部件的信息,通過各傳感器之間的相互校準和數據融合,實現精確到車道線的全球實時定位。
決策規劃是自動駕駛的關鍵部分之一,它首先是融合多傳感器信息,然后根據駕駛需求進行任務決策,接著能夠在避開存在的障礙物前提之下,通過一些特定的約束條件,規劃出兩點之間多條可以選擇的安全路徑,并在這些路徑當中選擇一條最優的路徑,作為車輛行駛軌跡,那就是規劃。按照劃分的層面不同,可以分為全局規劃和局部規劃兩種,全局規劃是由獲取到的地圖信息,規劃出一條在特定條件之下的無碰撞最優路徑。例如,從上海到北京有很多條路,規劃處一條作為行駛路線即為全局規劃。如柵格法、可視圖法、拓撲法、自由空間法、神經網絡法等靜態路徑規劃算法。局部規劃的則是根據全局的規劃,在一些局部環境信息的基礎之上,能夠避免碰撞一些未知的障礙物,最終達到目的目標點的過程。例如,在全局規劃好的上海到北京的那條路線上會有其他車輛或者障礙物,想要避過這些障礙物或者車輛,需要轉向調整車道,這就是局部路徑規劃。局部路徑規劃的方法包括:人工勢場法、矢量域直方圖法、虛擬力場法、遺傳算法等動態路徑規劃算法等。
決策規劃層是自主駕駛系統,智能性的直接體現,對車輛的行駛安全性和整車起到了決定性的作用,常見的決策規劃體系結構,有分層遞進式,反應式,以及二者混合式。
分層遞進式體系結構,就是一個串聯系統的結構,在該系統當中,智能駕駛系統的各模塊之間次序分明,上一個模塊的輸出即為下一模塊的輸入,因此又稱為感知規劃行動結構。但這種結構可靠性并不高,一旦某個模塊出現軟件或者硬件故障,整個信息流就會受到影響,整個系統很有可能發生崩潰,甚至處于癱瘓狀態。
反應式體系結構采用并聯的結構,控制層都可以直接基于傳感器的輸入進行決策,因此它所產生的動作就是傳感數據直接作用的一個結果,可以突出感知動作的特點,適用于完全陌生的環境。反應式體系結構中的許多行為主要涉及成為一個簡單的特殊任務,所以感覺規劃控制可以緊密的結合在一塊,占用的儲存空間并不大,因而可以產生快速的響應,實時性比較強,同時每一層只需要負責系統的某一個行為,整個系統可以方便靈活的實現低層次到高層次的一個過渡,而且如若其中一個模塊出現了預料之外的故障,剩下的層次,仍然可以產生有意義的動作,系統的魯棒性得到了很大的提高,難點在于,由于系統執行動作的靈活性,需要特定的協調機制來解決各個控制回路,同意執行機構爭奪之間的沖突,以便得到有意義的結果。
分層遞階式系統的一個結構和反應式體系的結構,都各自有優劣,都難以單獨的滿足行駛環境復雜多變的使用要求,所以越來越多的行業人士開始研究混合式的體系結構,將兩者的優點進行有效的結合,在全局規劃的層次上生成面向目標定義的分層式遞階行為,在局部規劃的層面上就生成面向目標搜索的反應式體系的行為。
自動駕駛的控制核心技術就是車輛的縱向控制,橫向控制,縱向控制及車輛的驅動和制動控制,而橫向控制的就是方向盤角度的調整以及輪胎力的控制,實現了縱向和橫向自動控制,就可以按給定目標和約束自動控制車運行。
車輛按照縱向控制是在行車速度方向上的控制,即車速以及本車與前后車或障礙物距離的自動控制。巡航控制和緊急制動控制都是典型的自動駕駛縱向控制案例。這類控制問題可歸結為對電機驅動、發動機、傳動和制動系統的控制。各種電機-發動機-傳動模型、汽車運行模型和剎車過程模型與不同的控制器算法結合,構成了各種各樣的縱向控制模式。
車輛的橫向控制就是指垂直于運動方向的控制,目標是控制汽車自動保持期望的行車路線,并在不同的車速、載荷、風阻、路況下有很好的乘坐舒適和穩定。車輛橫向控制主要有兩種基本設計方法,一種是基于駕駛員模擬的方法(一種是使用用較簡單的動力學模型和駕駛員操縱規則設計控制器;另一種是用駕駛員操縱過程的數據訓練控制器獲取控制算法);另一種是給予汽車橫向運動力學模型的控制方法(需要建立精確的汽車橫向運動模型。典型模型如單軌模型,該模型認為汽車左右兩側特性相同)。
除上述介紹的環境感知、精準定位、決策規劃和控制執行之外,自動駕駛汽車還涉及到高精度地圖、V2X、自動駕駛汽車測試等關鍵技術。自動駕駛技術是人工智能、高性能芯片、通信技術、傳感器技術、車輛控制技術、大數據技術等多領域技術的結合體,落地技術難度大。除此之外,自動駕駛技術落地,還要建立滿足自動駕駛要求的基礎交通設施,并考慮自動駕駛方面的法律法規等。
參考文獻:
1. 張放. 極限工況下自動駕駛車輛的軌跡規劃與運動控制 [博士]: 清華大學; 2018.
2. 陳文強. 基于復雜工況的高精準可預測自動駕駛環境認知方法 [博士]: 清華大學; 2018.
3. 張欣. 無人駕駛感知輔助系統的研究與仿真實現 [碩士]: 北京交通大學; 2019.
4. 陳延真. 無人駕駛環境感知系統及障礙物檢測研究 [碩士]: 天津大學; 2018.
關于自動駕駛是什么結構和自動駕駛是什么結構的的介紹到此就結束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關注本站。